§ 1065.545

(NMHCE) as soon as practical using good engineering judgment.

- (4) After quantifying exhaust gases, verify drift as follows:
- (i) For batch and continuous gas analyzers, record the mean analyzer value after stabilizing a zero gas to the analyzer. Stabilization may include time to purge the analyzer of any sample gas, plus any additional time to account for analyzer response.
- (ii) Record the mean analyzer value after stabilizing the span gas to the analyzer. Stabilization may include time to purge the analyzer of any sample gas, plus any additional time to account for analyzer response.
- (iii) Use these data to validate and correct for drift as described in \$1065.550.
- (h) Unless the standard-setting part specifies otherwise, determine whether or not the test meets the cycle-validation criteria in § 1065.514.
- (1) If the criteria void the test, you may retest using the same denormalized duty cycle, or you may re-map the engine, denormalize the reference duty cycle based on the new map and retest the engine using the new denormalized duty cycle.
- (2) If the criteria void the test for a constant-speed engine only during commands of maximum test torque, you may do the following:
- (i) Determine the first and last feedback speeds at which maximum test torque was commanded.
- (ii) If the last speed is greater than or equal to 90% of the first speed, the test is void. You may retest using the same denormalized duty cycle, or you may re-map the engine, denormalize the reference duty cycle based on the new map and retest the engine using the new denormalized duty cycle.
- (iii) If the last speed is less than 90% of the first speed, reduce maximum test torque by 5%, and proceed as follows:
- (A) Denormalize the entire duty cycle based on the reduced maximum test torque according to §1065.512.
- (B) Retest the engine using the denormalized test cycle that is based on the reduced maximum test torque.
- (C) If your engine still fails the cycle criteria, reduce the maximum test

torque by another 5% of the original maximum test torque.

- (D) If your engine fails after repeating this procedure four times, such that your engine still fails after you have reduced the maximum test torque by 20% of the original maximum test torque, notify us and we will consider specifying a more appropriate duty cycle for your engine under the provisions of §1065.10(c).
 - (i) [Reserved]
- (j) Measure and record ambient temperature, pressure, and humidity, as appropriate. For testing the following engines, you must record ambient temperature continuously to verify that it remains within the pre-test temperature range as specified in §1065.520(b):
 - (1) Air-cooled engines.
- (2) Engines equipped with auxiliary emission control devices that sense and respond to ambient temperature.
- (3) Any other engine for which good engineering judgment indicates this is necessary to remain consistent with $\S 1065.10(c)(1)$.

[73 FR 37321, June 30, 2008, as amended at 75 FR 23043, Apr. 30, 2010]

§ 1065.545 Validation of proportional flow control for batch sampling.

For any proportional batch sample such as a bag or PM filter, demonstrate that proportional sampling was maintained using one of the following, noting that you may omit up to 5% of the total number of data points as outliers:

- (a) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate for raw exhaust sampling and the dilute exhaust flow rate for CVS sampling, or their 1 Hz means with the statistical calculations in $\S 1065.602$. Determine the standard error of the estimate, SEE, of the sample flow rate versus the total flow rate. For each test interval, demonstrate that SEE was less than or equal to 3.5% of the mean sample flow rate.
- (b) For any pair of flow meters, use recorded sample and total flow rates, where total flow rate means the raw exhaust flow rate for raw exhaust sampling and the dilute exhaust flow rate for CVS sampling, or their 1 Hz means to demonstrate that each flow rate was constant within ±2.5% of its respective

Environmental Protection Agency

mean or target flow rate. You may use the following options instead of recording the respective flow rate of each type of meter:

- (1) Critical-flow venturi option. For critical-flow venturis, you may use recorded venturi-inlet conditions or their 1 Hz means. Demonstrate that the flow density at the venturi inlet was constant within ±2.5% of the mean or target density over each test interval. For a CVS critical-flow venturi, you may demonstrate this by showing that the absolute temperature at the venturi inlet was constant within ±4% of the mean or target absolute temperature over each test interval.
- (2) Positive-displacement pump option. You may use recorded pump-inlet conditions or their 1 Hz means. Demonstrate that the flow density at the pump inlet was constant within $\pm 2.5\%$ of the mean or target density over each test interval. For a CVS pump, you may demonstrate this by showing that the absolute temperature at the pump inlet was constant within $\pm 2\%$ of the mean or target absolute temperature over each test interval.
- (c) Using good engineering judgment, demonstrate with an engineering analysis that the proportional-flow control system inherently ensures proportional sampling under all circumstances expected during testing. For example, you might use CFVs for both sample flow and total flow and demonstrate that they always have the same inlet pressures and temperatures and that they always operate under critical-flow conditions.

[73 FR 37322, June 30, 2008, as amended at 75 FR 23043, Apr. 30, 2010]

§ 1065.546 Validation of minimum dilution ratio for PM batch sampling.

Use continuous flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the minimum dilution ratios for PM batch sampling as specified in \$1065.140(e)(2) over the test interval. You may use mode-average values instead of continuous measurements for discrete mode steady-state duty cycles. Determine the minimum primary and minimum overall dilution ratios using one of the following methods (you may use a dif-

ferent method for each stage of dilution):

- (a) Determine minimum dilution ratio based on molar flow data. This involves determination of at least two of the following three quantities: Raw exhaust flow (or previously diluted flow), dilution air flow, and dilute exhaust flow. You may determine the raw exhaust flow rate based on the measured intake air molar flow rate and the chemical balance terms in §1065.655. You may alternatively estimate the molar raw exhaust flow rate based on intake air, fuel rate measurements, and fuel properties, consistent with good engineering judgment.
- (b) Determine minimum dilution ratio based on tracer gas (e.g., CO₂) concentrations in the raw (or previously diluted) and dilute exhaust corrected for any removed water.
- (c) Use good engineering judgment to develop your own method of determining dilution ratios.

[75 FR 23043, Apr. 30, 2010]

§ 1065.550 Gas analyzer range validation, drift validation, and drift correction.

- (a) Range validation. If an analyzer operated above 100% of its range at any time during the test, perform the following steps:
- (1) For batch sampling, re-analyze the sample using the lowest analyzer range that results in a maximum instrument response below 100%. Report the result from the lowest range from which the analyzer operates below 100% of its range.
- (2) For continuous sampling, repeat the entire test using the next higher analyzer range. If the analyzer again operates above 100% of its range, repeat the test using the next higher range. Continue to repeat the test until the analyzer always operates at less than 100% of its range.
- (b) Drift validation and drift correction. Calculate two sets of brake-specific emission results for each test interval. Calculate one set using the data before drift correction and calculate the other set after correcting all the data for drift according to §1065.672. Use the two sets of brake-specific emission results to validate the duty cycle for drift as follows: